478 lines
22 KiB
C++
478 lines
22 KiB
C++
// USB Power Tester - Basic
|
|
//
|
|
// This code implements the basic functionality for the USB Power Tester.
|
|
// It reads voltage, current and power from the INA219, calculates
|
|
// capacity and shows the values on the OLED. The SET button is used to
|
|
// switch between different screens.
|
|
//
|
|
// +-\/-+
|
|
// RESET --- A0 (D5) PB5 1|° |8 Vcc
|
|
// SET ----- A3 (D3) PB3 2| |7 PB2 (D2) A1 --- OLED/INA (SCK)
|
|
// A2 (D4) PB4 3| |6 PB1 (D1)
|
|
// GND 4| |5 PB0 (D0) ------ OLED/INA (SDA)
|
|
// +----+
|
|
//
|
|
// Core: ATtinyCore (https://github.com/SpenceKonde/ATTinyCore)
|
|
// Board: ATtiny25/45/85 (No bootloader)
|
|
// Chip: ATtiny25 or 45 or 85 (depending on your chip)
|
|
// Clock: 8 MHz (internal)
|
|
// Millis: disabled
|
|
// B.O.D.: 2.7V
|
|
// Leave the rest on default settings. Don't forget to "Burn bootloader"!
|
|
// No Arduino core functions or libraries are used. Use the makefile if
|
|
// you want to compile without Arduino IDE.
|
|
//
|
|
// The I²C OLED implementation is based on TinyOLEDdemo
|
|
// https://github.com/wagiminator/ATtiny13-TinyOLEDdemo
|
|
//
|
|
// 2020 by Stefan Wagner
|
|
// Project Files (EasyEDA): https://easyeda.com/wagiminator
|
|
// Project Files (Github): https://github.com/wagiminator
|
|
// License: http://creativecommons.org/licenses/by-sa/3.0/
|
|
|
|
|
|
// Oscillator calibration value (uncomment and set if necessary)
|
|
// #define OSCCAL_VAL 0x48
|
|
|
|
// Libraries
|
|
#include <avr/io.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <avr/interrupt.h>
|
|
#include <util/delay.h>
|
|
|
|
// Pin definitions
|
|
#define I2C_SDA PB0 // I2C serial data pin
|
|
#define I2C_SCL PB2 // I2C serial clock pin
|
|
#define SETBUTTON PB3 // SET button
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// I2C Implementation
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// I2C macros
|
|
#define I2C_SDA_HIGH() DDRB &= ~(1<<I2C_SDA) // release SDA -> pulled HIGH by resistor
|
|
#define I2C_SDA_LOW() DDRB |= (1<<I2C_SDA) // SDA as output -> pulled LOW by MCU
|
|
#define I2C_SCL_HIGH() DDRB &= ~(1<<I2C_SCL) // release SCL -> pulled HIGH by resistor
|
|
#define I2C_SCL_LOW() DDRB |= (1<<I2C_SCL) // SCL as output -> pulled LOW by MCU
|
|
#define I2C_SDA_READ() (PINB & (1<<I2C_SDA)) // read SDA line
|
|
#define I2C_DELAY() asm("lpm") // delay 3 clock cycles
|
|
#define I2C_CLOCKOUT() I2C_SCL_HIGH();I2C_DELAY();I2C_SCL_LOW() // clock out
|
|
|
|
// I2C init function
|
|
void I2C_init(void) {
|
|
DDRB &= ~((1<<I2C_SDA)|(1<<I2C_SCL)); // pins as input (HIGH-Z) -> lines released
|
|
PORTB &= ~((1<<I2C_SDA)|(1<<I2C_SCL)); // should be LOW when as ouput
|
|
}
|
|
|
|
// I2C transmit one data byte to the slave, ignore ACK bit, no clock stretching allowed
|
|
void I2C_write(uint8_t data) {
|
|
for(uint8_t i=8; i; i--, data<<=1) { // transmit 8 bits, MSB first
|
|
(data & 0x80) ? (I2C_SDA_HIGH()) : (I2C_SDA_LOW()); // SDA HIGH if bit is 1
|
|
I2C_CLOCKOUT(); // clock out -> slave reads the bit
|
|
}
|
|
I2C_DELAY(); // delay 3 clock cycles
|
|
I2C_SDA_HIGH(); // release SDA for ACK bit of slave
|
|
I2C_CLOCKOUT(); // 9th clock pulse is for the ignored ACK bit
|
|
}
|
|
|
|
// I2C start transmission
|
|
void I2C_start(uint8_t addr) {
|
|
I2C_SDA_LOW(); // start condition: SDA goes LOW first
|
|
I2C_SCL_LOW(); // start condition: SCL goes LOW second
|
|
I2C_write(addr); // send slave address
|
|
}
|
|
|
|
// I2C restart transmission
|
|
void I2C_restart(uint8_t addr) {
|
|
I2C_SDA_HIGH(); // prepare SDA for HIGH to LOW transition
|
|
I2C_SCL_HIGH(); // restart condition: clock HIGH
|
|
I2C_start(addr); // start again
|
|
}
|
|
|
|
// I2C stop transmission
|
|
void I2C_stop(void) {
|
|
I2C_SDA_LOW(); // prepare SDA for LOW to HIGH transition
|
|
I2C_SCL_HIGH(); // stop condition: SCL goes HIGH first
|
|
I2C_SDA_HIGH(); // stop condition: SDA goes HIGH second
|
|
}
|
|
|
|
// I2C receive one data byte from the slave (ack=0 for last byte, ack>0 if more bytes to follow)
|
|
uint8_t I2C_read(uint8_t ack) {
|
|
uint8_t data = 0; // variable for the received byte
|
|
I2C_SDA_HIGH(); // release SDA -> will be toggled by slave
|
|
for(uint8_t i=8; i; i--) { // receive 8 bits
|
|
data<<=1; // bits shifted in right (MSB first)
|
|
I2C_DELAY(); // delay 3 clock cycles
|
|
I2C_SCL_HIGH(); // clock HIGH
|
|
if(I2C_SDA_READ()) data |=1; // read bit
|
|
I2C_SCL_LOW(); // clock LOW -> slave prepares next bit
|
|
}
|
|
if (ack) I2C_SDA_LOW(); // pull SDA LOW to acknowledge (ACK)
|
|
I2C_DELAY(); // delay 3 clock cycles
|
|
I2C_CLOCKOUT(); // clock out -> slave reads ACK bit
|
|
return(data); // return the received byte
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// OLED Implementation
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// OLED definitions
|
|
#define OLED_ADDR 0x78 // OLED write address
|
|
#define OLED_CMD_MODE 0x00 // set command mode
|
|
#define OLED_DAT_MODE 0x40 // set data mode
|
|
#define OLED_INIT_LEN 11 // 9: no screen flip, 11: screen flip
|
|
|
|
// OLED init settings
|
|
const uint8_t OLED_INIT_CMD[] PROGMEM = {
|
|
0xA8, 0x1F, // set multiplex for 128x32
|
|
0x20, 0x01, // set vertical memory addressing mode
|
|
0xDA, 0x02, // set COM pins hardware configuration to sequential
|
|
0x8D, 0x14, // enable charge pump
|
|
0xAF, // switch on OLED
|
|
0xA1, 0xC8 // flip the screen
|
|
};
|
|
|
|
// OLED 6x16 font
|
|
const uint8_t OLED_FONT[] PROGMEM = {
|
|
0x7C, 0x1F, 0x02, 0x20, 0x02, 0x20, 0x02, 0x20, 0x02, 0x20, 0x7C, 0x1F, // 0 0
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x1F, // 1 1
|
|
0x00, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x00, // 2 2
|
|
0x00, 0x00, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x1F, // 3 3
|
|
0x7C, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x7C, 0x1F, // 4 4
|
|
0x7C, 0x00, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x00, 0x1F, // 5 5
|
|
0x7C, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x00, 0x1F, // 6 6
|
|
0x7C, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x7C, 0x1F, // 7 7
|
|
0x7C, 0x1F, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x1F, // 8 8
|
|
0x7C, 0x00, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x82, 0x20, 0x7C, 0x1F, // 9 9
|
|
0x00, 0x00, 0xF0, 0x3F, 0x8C, 0x00, 0x82, 0x00, 0x8C, 0x00, 0xF0, 0x3F, // 10 A
|
|
0x00, 0x00, 0xFE, 0x07, 0x00, 0x18, 0x00, 0x20, 0x00, 0x18, 0xFE, 0x07, // 11 V
|
|
0x00, 0x00, 0xFE, 0x1F, 0x00, 0x20, 0x00, 0x1F, 0x00, 0x20, 0xFE, 0x1F, // 12 W
|
|
0x00, 0x00, 0xFE, 0x3F, 0x00, 0x01, 0x80, 0x00, 0x80, 0x00, 0x00, 0x3F, // 13 h
|
|
0x00, 0x00, 0x80, 0x3F, 0x80, 0x00, 0x80, 0x3F, 0x80, 0x00, 0x00, 0x3F, // 14 m
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, // 15 .
|
|
0x00, 0x00, 0x00, 0x00, 0x30, 0x06, 0x30, 0x06, 0x00, 0x00, 0x00, 0x00, // 16 :
|
|
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, // 17 -
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 // 18 SPACE
|
|
};
|
|
|
|
// Character definitions
|
|
#define DECIMAL 15
|
|
#define COLON 16
|
|
#define SPACE 18
|
|
|
|
// For BCD conversion
|
|
const uint16_t divider[5] = {10000, 1000, 100, 10, 1};
|
|
|
|
// OLED init function
|
|
void OLED_init(void) {
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_CMD_MODE); // set command mode
|
|
for (uint8_t i=0; i<OLED_INIT_LEN; i++)
|
|
I2C_write(pgm_read_byte(&OLED_INIT_CMD[i])); // send the command bytes
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED set the cursor
|
|
void OLED_setCursor(uint8_t xpos, uint8_t ypos) {
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_CMD_MODE); // set command mode
|
|
I2C_write(0x22); // command for min/max page
|
|
I2C_write(ypos); I2C_write(ypos+1); // min: ypos; max: ypos+1
|
|
I2C_write(xpos & 0x0F); // set low nibble of start column
|
|
I2C_write(0x10 | (xpos >> 4)); // set high nibble of start column
|
|
I2C_write(0xB0 | (ypos)); // set start page
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED clear screen
|
|
void OLED_clearScreen(void) {
|
|
OLED_setCursor(0, 0); // set cursor at upper half
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
uint8_t i = 0; // count variable
|
|
do {I2C_write(0x00);} while (--i); // clear upper half
|
|
I2C_stop(); // stop transmission
|
|
OLED_setCursor(0, 2); // set cursor at lower half
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
do {I2C_write(0x00);} while (--i); // clear upper half
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED plot a character
|
|
void OLED_plotChar(uint8_t ch) {
|
|
ch = (ch << 3) + (ch << 2); // calculate position of character in font array
|
|
I2C_write(0x00); I2C_write(0x00); // print spacing between characters
|
|
for(uint8_t i=12; i; i--) I2C_write(pgm_read_byte(&OLED_FONT[ch++])); // print character
|
|
I2C_write(0x00); I2C_write(0x00); // print spacing between characters
|
|
}
|
|
|
|
// OLED print a character
|
|
void OLED_printChar(uint8_t ch) {
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
OLED_plotChar(ch); // plot the character
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED print a string from program memory; terminator: 255
|
|
void OLED_printPrg(const uint8_t* p) {
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
uint8_t ch = pgm_read_byte(p); // read first character from program memory
|
|
while (ch < 255) { // repeat until string terminator
|
|
OLED_plotChar(ch); // plot character on OLED
|
|
ch = pgm_read_byte(++p); // read next character
|
|
}
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED print 16-bit value as 5-digit decimal (BCD conversion by substraction method)
|
|
void OLED_printDec16(uint16_t value) {
|
|
uint8_t leadflag = 0; // flag for leading spaces
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
for(uint8_t digit = 0; digit < 5; digit++) { // 5 digits
|
|
uint8_t digitval = 0; // start with digit value 0
|
|
while (value >= divider[digit]) { // if current divider fits into the value
|
|
leadflag = 1; // end of leading spaces
|
|
digitval++; // increase digit value
|
|
value -= divider[digit]; // decrease value by divider
|
|
}
|
|
if (leadflag || (digit == 4)) OLED_plotChar(digitval); // print the digit
|
|
else OLED_plotChar(SPACE); // or print leading space
|
|
}
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED print 16-bit value as 3-digit decimal (BCD conversion by substraction method)
|
|
void OLED_printDec12(uint16_t value) {
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
for(uint8_t digit = 2; digit < 5; digit++) { // 3 digits
|
|
uint8_t digitval = 0; // start with digit value 0
|
|
while (value >= divider[digit]) { // if current divider fits into the value
|
|
digitval++; // increase digit value
|
|
value -= divider[digit]; // decrease value by divider
|
|
}
|
|
OLED_plotChar(digitval); // print the digit
|
|
}
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// OLED print 8-bit value as 2-digit decimal (BCD conversion by substraction method)
|
|
void OLED_printDec8(uint8_t value) {
|
|
I2C_start(OLED_ADDR); // start transmission to OLED
|
|
I2C_write(OLED_DAT_MODE); // set data mode
|
|
uint8_t digitval = 0; // start with digit value 0
|
|
while (value >= 10) { // if current divider fits into the value
|
|
digitval++; // increase digit value
|
|
value -= 10; // decrease value by divider
|
|
}
|
|
OLED_plotChar(digitval); // print first digit
|
|
OLED_plotChar(value); // print second digit
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// INA219 Implementation
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// INA219 register values
|
|
#define INA_ADDR 0x80 // I2C write address of INA219
|
|
#define INA_CONFIG 0b0000011001100111 // INA config register according to datasheet
|
|
#define INA_CALIB 5120 // INA calibration register according to R_SHUNT
|
|
#define INA_REG_CONFIG 0x00 // INA configuration register address
|
|
#define INA_REG_CALIB 0x05 // INA calibration register address
|
|
#define INA_REG_SHUNT 0x01 // INA shunt voltage register address
|
|
#define INA_REG_VOLTAGE 0x02 // INA bus voltage register address
|
|
#define INA_REG_POWER 0x03 // INA power register address
|
|
#define INA_REG_CURRENT 0x04 // INA current register address
|
|
|
|
// INA219 write a register value
|
|
void INA_write(uint8_t reg, uint16_t value) {
|
|
I2C_start(INA_ADDR); // start transmission to INA219
|
|
I2C_write(reg); // write register address
|
|
I2C_write(value >> 8); // write register content high byte
|
|
I2C_write(value); // write register content low byte
|
|
I2C_stop(); // stop transmission
|
|
}
|
|
|
|
// INA219 read a register
|
|
uint16_t INA_read(uint8_t reg) {
|
|
uint16_t result; // result variable
|
|
I2C_start(INA_ADDR); // start transmission to INA219
|
|
I2C_write(reg); // write register address
|
|
I2C_restart(INA_ADDR | 0x01); // restart for reading
|
|
result = (uint16_t)(I2C_read(1) << 8) | I2C_read(0); // read register content
|
|
I2C_stop(); // stop transmission
|
|
return(result); // return result
|
|
}
|
|
|
|
// INA219 write inital configuration and calibration values
|
|
void INA_init(void) {
|
|
INA_write(INA_REG_CONFIG, INA_CONFIG); // write INA219 configuration
|
|
INA_write(INA_REG_CALIB, INA_CALIB); // write INA219 calibration
|
|
}
|
|
|
|
// INA219 read voltage
|
|
uint16_t INA_readVoltage(void) {
|
|
return((INA_read(INA_REG_VOLTAGE) >> 1) & 0xFFFC);
|
|
}
|
|
|
|
// INA219 read sensor values
|
|
uint16_t INA_readCurrent(void) {
|
|
uint16_t result = INA_read(INA_REG_CURRENT);
|
|
if (result > 32767) result = 0;
|
|
return(result);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Millis Counter Implementation for Timer0
|
|
// -----------------------------------------------------------------------------
|
|
|
|
volatile uint32_t MIL_counter = 0; // millis counter variable
|
|
|
|
// Init millis counter
|
|
void MIL_init(void) {
|
|
OCR0A = 124; // TOP: 124 = 8000kHz / (64 * 1kHz) - 1
|
|
TCCR0A = (1<<WGM01); // timer0 CTC mode
|
|
TCCR0B = (1<<CS01)|(1<<CS00); // start timer0 with prescaler 64
|
|
TIMSK = (1<<OCIE0A); // enable output compare match interrupt
|
|
sei(); // enable global interrupts
|
|
}
|
|
|
|
// Read millis counter
|
|
uint32_t MIL_read(void) {
|
|
cli(); // disable interrupt for atomic read
|
|
uint32_t result = MIL_counter; // read millis counter
|
|
sei(); // enable interrupts
|
|
return(result); // return millis counter value
|
|
}
|
|
|
|
// Timer0 compare match A interrupt service routine (every millisecond)
|
|
ISR(TIM0_COMPA_vect) {
|
|
MIL_counter++; // increase millis counter
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Main Function
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Some "strings"
|
|
const uint8_t mA[] PROGMEM = { 14, 10, 18, 255 }; // "mA "
|
|
const uint8_t mV[] PROGMEM = { 14, 11, 18, 255 }; // "mV "
|
|
const uint8_t mW[] PROGMEM = { 14, 12, 18, 255 }; // "mW "
|
|
const uint8_t mAh[] PROGMEM = { 14, 10, 13, 255 }; // "mAh"
|
|
const uint8_t mWh[] PROGMEM = { 14, 12, 13, 255 }; // "mWh"
|
|
const uint8_t SEP[] PROGMEM = { 18, 17, 18, 255 }; // " - "
|
|
|
|
int main(void) {
|
|
// Local variables
|
|
uint16_t voltage, current, power; // voltage in mV, current in mA, power in mW
|
|
uint16_t minvoltage = 65535, maxvoltage = 0; // min/max voltages in mV
|
|
uint16_t mincurrent = 65535, maxcurrent = 0; // min/max current in mA
|
|
uint16_t minpower = 65535, maxpower = 0; // min/max power in mV
|
|
uint32_t lastmillis, nowmillis, interval; // for timing calculation in millis
|
|
uint32_t duration = 0; // total duration in millis
|
|
uint16_t seconds; // total duration in seconds
|
|
uint32_t capacity = 0, energy = 0; // counter for capacity in uAh and energy in uWh
|
|
uint8_t primescreen = 0; // screen selection flag
|
|
uint8_t lastbutton = 1; // button flag (0: button pressed)
|
|
|
|
// Set oscillator calibration value
|
|
#ifdef OSCCAL_VAL
|
|
OSCCAL = OSCCAL_VAL; // set the value if defined above
|
|
#endif
|
|
|
|
// Setup
|
|
PORTB = (1<<SETBUTTON); // pullup for set button
|
|
MIL_init(); // init millis counter
|
|
I2C_init(); // init I2C
|
|
INA_init(); // init INA219
|
|
OLED_init(); // init OLED
|
|
OLED_clearScreen(); // clear screen
|
|
lastmillis = MIL_read(); // read millis counter
|
|
|
|
// Loop
|
|
while(1) {
|
|
// Read sensor values
|
|
voltage = INA_readVoltage(); // read voltage in mV from INA219
|
|
current = INA_readCurrent(); // read current in mA from INA219
|
|
|
|
// Calculate timings
|
|
nowmillis = MIL_read(); // read millis counter
|
|
interval = nowmillis - lastmillis; // calculate recent time interval
|
|
lastmillis = nowmillis; // reset lastmillis
|
|
duration += interval; // calculate total duration in millis
|
|
seconds = duration / 1000; // calculate total duration in seconds
|
|
|
|
// Calculate power, capacity and energy
|
|
power = (uint32_t)voltage * current / 1000; // calculate power in mW
|
|
capacity += interval * current / 3600; // calculate capacity in uAh
|
|
energy += interval * power / 3600; // calculate energy in uWh
|
|
|
|
// Update min/max values
|
|
if (minvoltage > voltage) minvoltage = voltage;
|
|
if (maxvoltage < voltage) maxvoltage = voltage;
|
|
if (mincurrent > current) mincurrent = current;
|
|
if (maxcurrent < current) maxcurrent = current;
|
|
if (minpower > power ) minpower = power;
|
|
if (maxpower < power ) maxpower = power;
|
|
|
|
// Check SET button and set screen flag accordingly
|
|
if (PINB & (1<<SETBUTTON)) lastbutton = 0;
|
|
else if (!lastbutton) {
|
|
if (++primescreen > 4) primescreen = 0;
|
|
OLED_clearScreen();
|
|
lastbutton = 1;
|
|
}
|
|
|
|
// Display values on the OLED
|
|
switch (primescreen) {
|
|
case 0: OLED_setCursor(0,0);
|
|
OLED_printDec16(voltage); OLED_printPrg(mV);
|
|
OLED_printDec16(power); OLED_printPrg(mW);
|
|
OLED_setCursor(0,2);
|
|
OLED_printDec16(current); OLED_printPrg(mA);
|
|
OLED_printDec16(capacity / 1000); OLED_printPrg(mAh);
|
|
break;
|
|
case 1: OLED_setCursor(0,0);
|
|
OLED_printDec16(minvoltage); OLED_printPrg(SEP);
|
|
OLED_printDec16(maxvoltage); OLED_printPrg(mV);
|
|
OLED_setCursor(0,2);
|
|
OLED_printDec16(mincurrent); OLED_printPrg(SEP);
|
|
OLED_printDec16(maxcurrent); OLED_printPrg(mA);
|
|
break;
|
|
case 2: OLED_setCursor(0,1);
|
|
OLED_printDec16(minpower); OLED_printPrg(SEP);
|
|
OLED_printDec16(maxpower); OLED_printPrg(mW);
|
|
break;
|
|
case 3: // ATtiny25 without decimal places to make it fit into the flash
|
|
#if defined(__AVR_ATtiny25__)
|
|
OLED_setCursor(32,0);
|
|
OLED_printDec16(capacity / 1000); OLED_printPrg(mAh);
|
|
OLED_setCursor(32,2);
|
|
OLED_printDec16(energy / 1000); OLED_printPrg(mWh);
|
|
#else
|
|
OLED_setCursor(16,0);
|
|
OLED_printDec16(capacity / 1000); OLED_printChar(DECIMAL);
|
|
OLED_printDec12(capacity % 1000); OLED_printPrg(mAh);
|
|
OLED_setCursor(16,2);
|
|
OLED_printDec16(energy / 1000); OLED_printChar(DECIMAL);
|
|
OLED_printDec12(energy % 1000); OLED_printPrg(mWh);
|
|
#endif
|
|
break;
|
|
case 4: OLED_setCursor(32,1);
|
|
OLED_printDec8(seconds / 3600); OLED_printChar(COLON);
|
|
seconds %= 3600;
|
|
OLED_printDec8(seconds / 60 ); OLED_printChar(COLON);
|
|
OLED_printDec8(seconds % 60 );
|
|
break;
|
|
default: break;
|
|
}
|
|
_delay_ms(100);
|
|
}
|
|
}
|